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ABSTRACT  
 

A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) 

frame structures subject to combinations of gravity and lateral static loads based on ACI 

318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused 

and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total 

cost of the RC frames is minimized during the optimization process subject to constraints on 

demand capacity ratios (DCRs) of structural members. Three benchmark design examples 

are tested using ABCA and IABCA and the results are compared with those of presented in 

the literature. The numerical results indicate that the proposed IABCA is an efficient 

computational tool for discrete optimization of RC frames.  
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1. INTRODUCTION 
 

Optimization of reinforced concrete (RC) frames is a complex problem, due to the large 

number of variables that influence the design process, the different nature of the variables 

and the various reinforcement details available for the design problem at hand. For RC 

frames three different cost components of concrete, steel and formwork should be 

considered and in this case a combination of design variables must be such determined that 

the total cost is minimal. As designing and constructing of cost effective structures is of high 

importance, optimization of RC frames has been attracted much attention in recent decades. 
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An exhaustive literature review has been achieved in [1] indicating that genetic algorithm 

(GA) has been widely employed in the scope of RC frames optimization. In the recent years, 

modern meta-heuristic algorithms were developed and employed for optimal design of RC 

frames. Kaveh and Sabzi [1-2] used heuristic big bang-big crunch (HBB-BC) and heuristic 

particle swarm ant colony optimization (HPSACO) algorithms for optimization of planar 

RC frames. Kaveh and Behnam [3] optimized 3D RC frames subject to natural frequency 

constraints by charged system search (CSS) algorithm. Gholizadeh and Aligholizadeh [4] 

employed bat algorithm (BA) to optimize 2D RC frames and they compared the results of 

BA with those of other meta-heuristics. Their study demonstrated that BA possesses better 

convergence rate with respect to the other algorithms.   

In order to overcome the computational rigor of the traditional gradient-based 

optimization algorithms, meta-heuristic search techniques were developed and their high 

capabilities in tackling complex problems have been proved in the literature [5]. One of 

these meta-heuristics is artificial bee colony algorithm (ABCA) proposed by Karaboga [6] 

based on the intelligent behavior of a honey bee swarm. In ABCA, a colony of artificial bees 

including three groups of employed bees, onlookers and scouts who search for better food 

sources [7-8] is numerically modeled to achieve optimization task. Comparison of the 

computational performance of ABCA with some other meta-heuristics, such as genetic 

algorithm (GA), particle swarm optimization (PSO), differential evolution algorithm (DE) 

and evolution strategies (ES) [9] indicated that ABCA is a better global optimization 

algorithm and it can be effectively employed to solve engineering problems. Furthermore, 

the lesser adjustable parameters of ABCA makes it very popular in the different fields of 

science and engineering [10].   

Besides all advantages of ABCA, it still suffers from shortcomings such as slow 

convergence, trapping in local optima and weak exploitation ability. In this paper, an 

improved ABCA (IABCA)  is proposed to optimize the RC frames. Three design examples 

are presented and the numerical simulations demonstrate the efficiency of the proposed 

IABCA compared with other algorithms.     

 

 

2. OPTIMIZATION PROBLEM FORMULATION 
 

In this study, total cost of RC frames, including the cost of concrete, steel reinforcement and 

framework of all beams and columns, is considered as the objective function of the 

optimization problem as follows: 
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where C is objective function; nb is the number of beams; bb,i , hb,i , Li and AS,b,i are the ith 

beam width, depth, length and area of the steel reinforcement, respectively; nc is the number 

of columns; bc,j , hc,j , Hj and AS,c,j are the jth column width, depth, length and area of the 

steel reinforcement, respectively; CC, CS and CF are the unit cost of concrete, steel and 

framework, respectively. As mentioned in [1], in the present work the following unit costs 
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are also considered: CC=105 $/m
3
, CS=7065 $/ m

3
, CF=92 $/ m

2
. 

It is clear that a semi-infinite set of member width, depth and steel reinforcement 

arrangements can be considered for RC structure elements. In this case, as the dimensions of 

the design space are very large, the computational burden of the optimization process 

increases. In order to reduce the dimensions of design space and consequently the 

computational cost, a countable number of cross-sections can be employed by constructing 

data sets in a practical range [4]. In the present study, the section databases constructed for 

beams and columns in [1] are employed. these databases of beams and columns are shown 

in Figs. 1 and 2, respectively. Further information about the databases can be found in [1].  

 

 
Figure 1. Database for the beams [1] 

 

 
Figure 2. Database for the columns [1] 

 

During the optimization prosecc, RC frames are analyzed for the following load cases 

according to ACI 318-08 code [11] and axial force and bending moments for each column and 

only bending moments for each beam are checked. 
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where DL, LL and EL are dead, live and earthquake loads, respectively. 

In order to design a beam the externally applied moment at mid-span ( 

uM ), left ( 

uLM ) and 

right ( 

uRM ) joints of beams should be respectively less than the factored moment capacities at 

the middle ( 

nM ), and near the ends ( 

nM ). The factored moment capacity for beams is 

computed as follows [4]: 
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where  =0.9 is the strength reduction factor; As is the area of the tensile bars;  fy is specified 

yield strength of the reinforcing bars; d is the effective depth of the section which is measured 

as the distance from extreme compression fiber to centroid of the longitudinal tensile 

reinforcing bars of the section; 
cf  is compressive strength of the concrete and b is the width of 

the cross-section.  

A simplified linear P-M interaction diagram [1], shown in Fig. 3, can be employed to 

evaluate the strength of a column subject to bending moment and axial force  

 

 
Figure 3. A simplified linear P-M interaction diagram [1] 

 

In a designed column the corresponding pair (Mu, Pu) under the applied loads does not fall 

outside the interaction diagram. In Fig. 3, if point B shows the position of the pair (Mu, Pu) and 

A is the crossing point of the line connecting B to the O and the interaction diagram, then the 

distance of the points A and B from O can be calculated. The ratio of the mentioned distances 

can be used as the constraint of the columns resistance. The angle between line OB and the 

horizontal axis (θ) is required to specify the point A. The lengths of OA (Ln) and OB (Lu) lines, 

can be computed as follows [4]: 

 
22 )()( nnn PML    (4) 

22 )()( uuu PML   (5) 

 

Therefroe, if for a column section 
nu LL  it can be concluded that the secction is suitable 

and safe enough. Besides the strength requirements, for columns of a frame, the dimensions 

of the top column (including width and height of the cross section i.e., bT , hT) should not be 

larger than those of the bottom one (bB , hB), and also the number of reinforcing bars in the 
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top column (nT) should not be greater than that of the bottom column (nB) [4]. 

Formulation of a sizing optimization problem of RC frames is represented as follows [4]: 

 

Minimize: F     Subject to: (6) 
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In this study, the constraints of the optimization problem are handled using the concept 

of exterior penalty functions method (EPFM) [12]. In this case, the pseudo unconstrained 

objective function is expressed as follows [4]:  

 

)1( columnbeam PPFΦ   (14) 

      



nb

i
ipbeam gggrP

1

2

3

2

2

2

1 }max{0,}max{0,}max{0,  (15) 

        



nc

j
jpcolumn ggggrP

1

2

7

2

6

2

5

2

4 }max{0,}max{0,}max{0,}max{0,  (16) 

 

whereΦ  and rp are the pseudo objective function and positive penalty parameter, 

respectively; 
beamP , and 

columnP  are the penalty functions of beams and columns of the frame, 

respectively [4]. 

In this study, the presented optimization problem of RC frames is solved by ABCA and 

its improved version (IABCA) and they are described in the next sections.  

 

 

3. ARTIFICIAL BEE COLONY ALGORITHM 
 

The ABCA is a stochastic, population-based optimization algorithm proposed by Karaboga 

[6]. ABCA was inspired and developed based on the model of the foraging behavior of honey 

bee swarm. The colony of artificial bees consists of three groups of bees: employed bees, 

onlookers and scouts. A bee which has found a food source to exploit is called an employed 
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bee. Onlookers are those waiting in the hive to receive the information about the food sources 

from the employed bees and Scouts are the bees which are randomly searching for new food 

sources around the hive. The first half of the colony consists of the employed artificial bees 

and the second half includes the onlookers.The number of employed bees is equal to the 

number of food sources around the hive. The employed bee whose food source has been 

exhausted becomes a scout.  Each cycle of the search consists of three steps: moving the 

employed and onlooker bees onto the food sources, calculating their nectar amounts and 

determining the scout bees and directing them onto possible food sources. A food source 

position represents a possible solution of the optimization problem at hand. The amount of 

nectar of a food source corresponds to the quality of the solution represented by that food 

source. Onlookers are placed on the food sources by using a probability based selection 

process. Every bee colony has scouts that are the colony’s explorers. The explorers do not have 

any guidance while looking for food. If a solution representing a food source is not improved 

by a predetermined number of trials, then that food source is abandoned by its employed bee 

and the employed bee is converted to a scout. 

In the ABCA the number of food sources is set to ns which is equal to the number of 

employed or onlooker bees, and d is the dimension of each solution vector and the main 

steps of the algorithm are as follows [13]: 

1. Selection of an initial population ( X1, …, Xns) on a random basis. 

 

 idiii xxxX  , ... , , 21

T   (17) 

)-(  rand(0,1) L

j

U

j

L

jij xx.xx   (18) 

 

in which, i {1, 2, ... , ns},  j  {1, 2, ... , d}; L

jx  and U

jx  are the lower and upper bounds 

for the jth dimension, respectively. 

2. Evaluation the fitness of each food source. 

3. Each employed bee searches the neighbourhood of its current food source to determine 

a new food source using the following equation:  
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where, k1, 2, ... , ns},  j{1, 2, ... , d}, ik   and 
ijΨ [–1,+1]; t is iteration number. 

4. Evaluation the nectar amount of the new food source and performing a greedy 

selection. (If the quality of the new food source is better than the current position, the 

employed bee leaves its position and moves to the new food source; in other words, If the 

fitness of the new food source is equal or better than that of Xi, the new food source takes 

the place of Xi in the population and becomes a new member.) 

5. An onlooker bee selects a food source based on the information received from all of 

the employed bees.The probability ip of selecting the food source i is determined as: 
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where ifit  is the fitness value of the food source Xi. After selecting a food source, the 

onlooker generates a new food source using Eq. (19). Once the new food source is 

generated, it will be evaluated and a greedy selection will be applied. 

6. If the fitness value of a food source cannot be further improved by a predetermined 

number of trials, the food source is considered abandoned and the employed bee associated 

with that food source becomes a scout. The scout randomly generates a new food source using 

the following equation: 
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The abandoned food source is replaced by the randomly generated one. In the ABCA, the 

predetermined number of trials for abandoning a food source is called limit, also in this 

algorithm at most one employed bee at each cycle can become a scout. 

7. If a termination condition is met, the process is stopped and the best food source is 

reported; otherwise the algorithm returns to step 3. 

Many successful applications of ABCA have been reported in the literature however, 

some serious computational drawbacks such as slow convergence, trapping in local optima 

and weak exploitation ability encouraged researchers to modify ABCA [9–10]. As the 

exploration and exploitation abilities are not balanced in the ABCA in this paper, an 

improved ABCA (IABCA) is proposed to overcome this difficuilty. The next section 

describes IABCA. 

 

 

4. IMPROVED ARTIFICIAL BEE COLONY ALGORITHM 
 

To enhance the convergence rate and the convergence precision of ABCA and to resolve its 

premature convergence issue, an improvement to the original ABCA is conducted in the 

present work. In order to achieve this purpose, a mechanism of well-known bat algorithm 

(BA) [14–15] is included in the onlooker phase of ABCA and the resulted algorithm is termed 

as improved ABCA (IABCA). The robustness of BA lies in its interesting ability in making a 

satisfactory balance between exploration and exploitation characteristics. Automatic switch 

from exploration to more extensive exploitation is achieved in BA when the optimality is 

approaching [16]. The fundamental steps of IABCA is expressed as follows: 

 

Initilization Phase 

1. Initilization algorithm parameters: number of generations (ng), ns and limit. 

2. Initilization parameters required for the mechanism taken from BA: A
0
=1, Amin=0, 

r
0
=0, rmax=0 , α=0.9, γ=0.01. 

3. Selection initial population using Eq. (18).  
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4. Evaluation the fitness of each food source.  

 

Employed Bees Phase  

5. Production new food sources using Eq. (19)  

6. Evaluation the fitness of new food sources. 

7. Application of greedy selection between the new and old solutions.  

8. Calculation probabilities for source sites using Eq. (20). 

 

Onlooker Bees Phase 

9. Selection ith source site based on probabilities of sites. 

10. If rand > ri, production new food source using the following equation: 
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where Rj, MR and 
ijΨ  are random numbers between [–1,+1]; 

j,bestx is jth dimention of the 

best solution found so far. 

11. Else if rand   ri, generation a new solution by local random walk as follows: 
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where is random number between [–1,+1]; aveA is average loudness 

12. Evaluation the fitness of new solutions. 

13. Application of greedy selection between the new and old solutions.  

14. If  rand < Ai  & solution is improved, Updating loudness (Ai) and pulse rate ri as: 

 
t

i

t
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Scout Bees Phase 

15. Finding abandoned food sources 

16. Generation new food sources on a random basis using Eq. (21). 

17. If a termination condition is met, the process is stopped and the best solution is 

reported; otherwise the algorithm returns to step 5. 

ABCA and IABCA are employed to tackle the stated optimization problem of some 

benchmark RC frames and the results are presented in the next section. In this paper, all of 

the required computer programs are coded in MATLAB [17] and a personal Pentium IV 3.0 

GHz has been used for computer implementation. 
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5. NUMERICAL EXAMPLES 
 

Three RC plane frames presented in [1, 4] are considered as the numerical examples of this 

study. In these examples, lateral equivalent static earthquake loads (EL) are applied as joint 

loads, and uniform gravity loads are assumed for a dead load DL = 22.3 kN/m and a live 

load LL = 10.7 kN/m. The assumed specified compressive strength of concrete and yield 

strength of reinforcement bars are 
cf  =23.5 and fy=392 MPa, respectively. For the first 

example ns=20 for the rest ns=30. The total number of generations is limited to 1000. For 

all examples, if the best solution is repeated in 40 consecutive iterations the algorithm will 

be terminated. The demand/capacity ratio (DCR) in the members of the optimum solutions, 

which is defined in the following equations, are given in all examples. 

 

For beams:   
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For columns:   
n
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5.1 Example 1: Three bay, four-story RC frame 

The geometry, lateral equivalent static earthquake loads and grouping details of the four-

story RC frame are shown in Fig. 4.  

 

 
Figure 4. Three bay, four-story RC frame 

 

The four-story RC frame is optimized by ABCA and IABCA meta-heuristics and the 

results are compared in Table 1.  

The results presented in Table 1 indicate that both the optimum solutions found by 

ABCA and IABCA are feasible.   
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Table 1: Optimum designs of three bay, four-story RC frame 

 
ABCA IABCA 

Dimensions Reinforcements Dimensions Reinforcements 

Element Width 

(mm) 

Depth 

(mm) 

Positive 

moment 

Negative 

moment 

Width 

(mm) 

Depth 

(mm) 

Positive 

moment 

Negative 

moment Type Group 

Beam 
B1 300 500 3-D19 5-D22 300 450 3-D19 6-D22 

B2 300 500 3-D19 5-D22 300 450 4-D19 5-D22 

Column 
C1 400 400 6-D25 350 350 8-D25 

C2 350 350 4-D25 350 350 4-D25 

Frame cost ($) 22916 21751 

Structural analyses 3980 4185 

Max. DCR for beams 0.939 0.999 

Max. DCR for columns 0.981 0.902 

 

Furthermore, the convergence histories of ABCA and IABCA meta-heuristics are 

depicted in Fig. 5. 

The results indicate that the optimum cost obtained by IABCA is less than that of the 

ABCA however, it is evident that the convergence rate of the proposed IABCA is much 

better than that of the ABCA. This RC frame has been optimized by Kaveh and Sabzi [1] 

and their optimum cost and the number of required analyses are 22207 $ and 8500, 

respectively. Thus, the solution found by IABCA is better than that of Kaveh and Sabzi [1] 

in terms of frame cost and computational burden. 

 

 
Figure 5. Convergence history of ABCA and IABCA for three bay, four-story RC frame 

 

5.2 Example 2: Three bay, eight-story RC frame 

The geometry of the three bay, eight-story RC frame, its element groups and lateral 

equivalent static earthquake loads are shown in Fig. 6. 

The ABCA and IABCA meta-heuristics are employed for optimization of the eight-story 

RC frame and the results are compared in Table 2. The convergence histories of ABCA and 

IABCA are shown in Fig. 7. 
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Figure 6. Three bay, eight-story RC frame 

 
Table 2: Optimum designs of three bay, eight-story RC frame 

 
ABCA IABCA 

Dimensions Reinforcements Dimensions Reinforcements 

Element Width 

(mm) 

Depth 

(mm) 

Positive 

moment 

Negative 

moment 

Width 

(mm) 

Depth 

(mm) 

Positive 

moment 

Negative 

moment Type Group 

Beam 

B1 300 550 3-D19 5-D22 300 500 3-D19 6-D22 

B2 300 500 3-D19 6-D22 300 500 3-D19 6-D22 

B3 300 500 3-D19 5-D22 300 500 3-D19 5-D22 

Column 

C1 400 400 8-D25 400 400 8-D25 

C2 450 450 8-D25 450 450 10-D25 

C3 350 350 8-D25 350 350 8-D25 

C4 350 350 4-D25 350 350 6-D25 

Frame cost ($) 48077         47897 

Structural analyses 15020         16215 

Max. DCR for beams 0.989         0.985 

Max. DCR for columns 0.990         0.959 

 

The results demonstrate that the solution of IABCA is slightly better than the optimum 

design of ABCA. Also, both the presented optimum designs in Table 1 are feasible.  
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Figure 7. Convergence history of ABCA and IABCA for three bay, eight-story RC frame 

 

The optimum cost obtained by IABCA in this example and its required analyses are 

respectively less than 48263 $ and 39500 of the solution reported in [1]. 
 

5.3 Example 3: Three bay, twelve-story RC frame 

Fig. 8 depicts the geometry, element groups and lateral loading of the three bay, twelve-

story RC frame. 

Table 3 compares the optimal solutions obtained by ABCA and IABCA meta-heuristics. 

In addition, the convergence histories of the meta-heuristics are shown in Fig. 9. The 

optimum design found by IABCA is better than that of the ABCA. 

 
Table 3: Optimum designs of three bay, twelve-story RC frame 

 
ABCA IABCA 

Dimensions Reinforcements Dimensions Reinforcements 

Element Width 

(mm) 

Depth 

(mm) 

Positive 

Moment 

Negative 

moment 

Width 

(mm) 

Depth 

(mm) 

Positive 

moment 

Negative 

moment Type Group 

Beam 

B1 350 550 3-D19 7-D22 350 600 3-D19 6-D22 

B2 350 550 3-D19 6-D22 300 550 3-D19 6-D22 

B3 350 550 3-D19 5-D22 300 500 3-D19 6-D22 

Column 

C1 450 450 12-D25 450 450 10-D25 

C2 600 600 12-D25 600 600 12-D25 

C3 400 400 8-D25 400 400 8-D25 

C4 500 500 10-D25 500 500 8-D25 

C5 350 350 8-D25 350 350 8-D25 

C6 400 400 4-D25 400 400 4-D25 

Frame cost ($)                82103         80413 

Structural analyses                16130         19030 

Max. DCR for beams                0.993         0.992 

Max. DCR for columns                0.982         0.939 
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Figure 8. Three bay, twelve-story RC frame 

 

 
Figure 9. Convergence history of ABCA and IABCA for three bay, twelve-story RC frame 
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As well as the previous examples, in the present example also the optimum cost obtained 

by IABCA is less than that of the reported in [1]. Furthermore, the IABCA requires 16215 

structural analyses which is less than the number of 54600 structural analyses required by 

the algorithm presented in [1]. 

 

 

6. CONCLUSIONS 
 

The main objective of the current study is to develop an optimization model that is capable 

of obtaining the optimum design for reinforced concrete frames in terms of cross section 

dimensions and reinforcement details. The optimization task is carried out using ABCA and 

IABCA meta-heuristics, while still satisfying the strength and serviceability constraints of 

the ACI318M-08.  

In this paper a computational strategy is applied to improve premature convergence issue 

of the ABCA and accuracy of the optimal frame costs. In this case, the performance of 

ABCA is improved by integrating a mechanism of bat algorithm (BA) in the onlooker phase 

of the ABCA. In the presented design examples, the optimum costs found by IABCA are 

slightly better compared with those of other algorithms. However, the computational 

demands of IABCA is considerably less in comparison with the other algorithms. 
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